杜洋

助理教授

教育背景

博士 (中国科学技术大学)

学士 (中南大学湘雅医学院)

研究领域
G蛋白偶联受体、受体生物学、信号转导、结构药理学、基于结构的药物设计
电子邮件
yangdu@cuhk.edu.cn
个人简介

杜洋教授2011年于中国科学技术大学取得博士学位,之后赴美国斯坦福大学医学院分子与细胞生理学系,师从2012年诺贝尔化学奖得主布莱恩·科比尔卡(Brian Kobilka)教授,从事G蛋白偶联受体(GPCR)相关的博士后研究工作,并于2016年底转为斯坦福医学中心研究科学家(Research Scientist)。期间获授美国心脏协会(American Heart Association)全额博士后奖学金和斯坦福心血管研究所资助等,并获得美国密歇根大学安娜堡分校医学院药学系助理教授职位(已婉拒)。主要研究方向是以β2肾上腺素受体等重要药物靶点的G蛋白偶联受体(GPCR)为对象,研究其与下游信号分子复合物的结构、功能和分子药理特性。

杜教授迄今已发表约50篇高质量SCI论文(13篇第一或通讯作者论文),包括在Cell、Nature、Nature Comm、Cell Research、JACS等国际一流期刊等报道的一系列科研成果,并受邀为Science、Nature Comm等多种国际主流科学杂志审稿。现为香港中文大学(深圳)生命与健康科学学院助理教授、博士生导师,科比尔卡创新药物开发研究院责任研究员。杜教授于2021年起作为教育部特聘专家,已入选国家级、广东省和深圳市等各级高层次人才项目。

学术著作

43. Kim HR*, Xu J*, Maeda S, Duc NM, Ahn D, Du Y# (co-corresponding author), Chung KY. Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family. Nat Commun. 2020 Jun 22;11(1):3160
42. Das M, Mahler F, Hariharan P, Wang H, Du Y, Mortensen J, Patallo E, Ghani L, Gluck D, Byrne B, Loland C, Guan L, Kobilka B, Keller S, Chae PS. Diastereomeric Cyclopentane-Based Maltosides (CPMs) as Tools for Membrane Protein Study. J Am Chem Soc. 2020 Dec 23;142(51):21382-21392
41. Chen G, Wang X, Ge Y, Ma L, Chen Q, Liu H, Du Y, Ye RD, Hu H, Ren R. Cryo-EM structure of activated bile acids receptor TGR5 in complex with stimulatory G protein. Signal Transduct Target Ther. 2020 Aug 3;5(1):142
40. Du Y*, Duc NM*, Rasmussen SGF*, Hilger D, Kubiak X, Wang L, Kim HR, Wegrecki M, Asuru A, Jeong KM, Lee J, Chance M, Lodowski DT, Kobilka BK, Chung KY. Assembly of a GPCR-G protein complex. Cell (2019) 177(5):1232-1242
39. Liu X, Xu X, Hilger D, Aschauer P, Tiemann JKS, Du Y, Liu H, Hirata K, Sun X, Guixa-Gonzalez R, Mathiesen JM, Hidebrand PW, Kobilka BK. Structural insights into the process of GPCR-G protein complex formation. Cell (2019) 177(5):1243-1251
38. Ehan M, Katsube S, Cecchetti C, Du Y, Mortensen JS, Wang H, Loland CJ, Kobilka BK, Byrne B, Guan L, Chae PS. New malonate-derived tetraglucoside (MTG) detergents for mem-brane protein stability. ACS Chem Biol. 2020 Jun 19;15(6):1697-1707
37. Bae HE, Ceccetti C, Du Y, Katsube S, Mortensen JS, Huang W, Rehan S, Lee HK, Lohand CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Pendant-bearing glucose-neopentyl glycol (P-GNG) amphiphiles for membrane protein manipulation: Importance of detergent pendant chain for protein stabilization. Acta Biomater. 2020 Jun 6:S1742-7061(20)30322-6
36. Ghani L, Munk C, Zhang X, Katsube S, Du Y, Cecchetti C, Huang WJ, Hyoung B, Saouros S, Ehsan M, Guan L, Liu XY, Loland C, Kobilka BK, Byrne B, Chae PS. 1,3,5-Triazine-cored maltoside amphiphiles for membrane protein extraction and stabilization. J Am Chem Soc. 2019 Dec 18;141(50):19677-19687
35. Strohman MJ, Maeda S, Hilger D, Masureel M, Du Y, Kobilka BK. Local membrane charge regulates β2 adrenergic receptor-Gi interaction. Nat Commun. 2019 May 20;10(1):2234
34. Sadaf A, Ramos M, Mortensen JS, Du Y, Bae HE, Munk CF, Hariharan P, Byrne B, Kobilka BK, Loland CJ, Guan L, Chae PS. Conformationally restricted monosaccharide-cored glycoside amphiphiles: the effect of detergent head group variation on membrane protein stability. ACS Chem Biol. 2019 Aug 16;14(8):1717-1726
33. Chae PS, Ehsan M, Du Y, Mortensen JS, Hariharan P, Qu Q, Ghani L, Das M, Grethen A, Byrne B, Skiniotis G, Keller S, Loland CJ, Guan L, Kobilka BK. Self-assembly behaviors and application of terphenyl-cored trimaltosides for membrane protein study: Impact of detergent hydrophobic group geometry on protein stability. Chemistry. 2019 Sep 2;25(49):11545-11554
32. Ehsan M, Kumar A, Mortensen JS, Du Y, Hariharan P, Byrne B, Guan L, Kobilka BK, Loland CJ, Chae PS. Self-assembly behaviors of a penta-phenylene maltoside and its application for membrane protein study. Chem Asian J. 2019 Jun 3;14(11):1926-1931
31. Das M, Du Y, Mortensen JS, Ramos M, Bae HE, Sadaf A, Byrne B, Guan L, Loland CJ, Kobilka BK, Chae PS. Trehalose-containing nanoassemblies for membrane protein stabilization: Importance of detergent micelle size for GPCR stability. Org Biomol Chem. 2019 Mar 20;17(12):3249-3257
30. Komolov KE*, Du Y* (co-first author), Duc NM, Betz R, Rodrigues J, Leib RD, Patra D, Skiniotis G, Adams CM, Dror R, Chung KY, Kobilka BK, Benovic JL. Structural and functional analysis of a β2-Adrenergic Receptor Complex with GRK5. Cell (2017) 169: 407-421 –Selected as the Featured Article of the Issue 
Recommended by F1000Prime: f1000.com/prime/727537208
29 Das M*, Du Y* (co-first author), Ribeiro O, Hariharan P, Mortensen JS, Patra D, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae, PS. Conformationally preorganized diastereomeric norbornane-based maltosides (NBMs) for membrane protein study: Implications of detergent kink for micellar properties. J. Am. Chem. Soc. (2017) 139: 3072-81
28 Ehsan M*, Du Y* (co-first author), Scull NJ, Tikhonova E, Tarrasch J, Mortensen JS, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. Highly Branched Penta-Saccharide-Bearing Amphiphiles for Membrane Protein Studies. J. Am. Chem. Soc. (2016) 138: 3789-96
27 Sadaf A*, Du Y* (co-first author), Hariharan P, Mortensen JS, Perez IM, Seven AB, Santillan C, Skiniotis G, Loland CJ, Kobilka BK, Guan L, Byrne B, Chae PS. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein structure study. Chemical Science (2017) 8: 1169-1177
26 Duc NM*, Du Y* (co-first author), Thorsen TS, Lee SY, Zhang C, Kato H, Kobilka BK, Chung KY. Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry. J. Am. Soc. Mass. Spectrom. (2015) 26: 808-817
25 Bae HE, Du Y, Hariharan P, Mortensen JS, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Asymmetric maltose neopentyl glycol amphiphiles for a membrane protein study: Effect of detergent asymmetricity on protein stability. Chemical Science (2018) 10(4):1107-1116
24 Hussain H, Hariharan P, Du Y, Mortensen JS, Ehsan M, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. A comparative study of branched and linear mannitol-based amphiphiles on membrane protein stability. Analyst (2018) 143(23):5702-5710
23 Das M, Du Y, Mortensen JS, Hariharan P, Lee HS, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Rationally engineered tandem facial amphiphiles for improved membrane protein stabilization efficacy. ChemBioChem (2018) 19(20):2225-2232
22 Das M, Du Y, Mortensen JS, Bae HE, Byrne B, Loland CJ, Kobilka BK, Chae PS. An engineered lithocholate-based facial amphiphile stabilizes membrane proteins: assessing the impact of detergent modularity on protein stability. Chemistry (2018) 24(39):9860-9868
21 Ehsan M, Das M, Stern V, Du Y, Mortensen JS, Hariharan P, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. Steroid-based amphiphiles for membrane protein study: Importance of alkyl spacer for protein stability. ChemBioChem (2018) 19(13):1433-1443
20 Ehsan M, Du Y, Molist I, Seven AB, Hariharan P, Mortensen JS, Ghani L, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. Vitamin E-based glycoside amphiphiles for membrane protein structural studies. Organic and Biomolecular Chemistry (2018) 16(14):2489-2498
19 Ehsan M, Ghani L, Du Y, Mortensen JS, Ribeiro O, Hu H, Skiniotis G, Loland CJ, Kobilka BK, Byrne B, Chae PS. New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies. Analyst (2017) 142: 3889-3898
18 Hussain H, Du Y, Tikhonova E, Mortensen JS, Ribeiro O, Santillan C, Das M, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Resorcinarene-based facial glycosides: implication of detergent flexibility on membrane protein stability. Chemistry (2017) 23(28): 6724-6729
17 Hussain H, Mortensen JS, Du Y, Santillan C, Ribeiro O, Go J, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Tandem malonate-based glucosides (TMGs) for membrane protein structural study. Scientific Reports (2017) 7(1):3963
16 Woldring DR, Holec PV, Stern LA, Du Y, Hackel, BJ. A gradient of sitewise diversity promotes evolutionary fitness for binder discovery in a three-helix bundle protein scaffold. Biochemistry (2017) 56: 1656-1671
15 Das M, Du Y, Mortensen JS, Ribeiro O, Loland CJ, Kobilka BK, Byrne B, Chae PS. Butane-1,2,3,4-tetraol-based Amphiphilic Stereoisomers for Membrane Protein Study: Importance of Chirality in the Hydrophobic Region. Chemical Science (2017) 8: 1169-1177
14 Cho KH, Scull NJ, Du Y, Hariharan P, Mortensen JS, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Mesitylene-cored glucoside amphiphiles (MGAs) for membrane protein study: importance of alkyl chain density in detergent efficacy. Chemistry (2016) 22(52):18833-18839
13 Bae HE, Mortensen JS, Ribeiro O, Du Y, Ehsan M, Kobilka BK, Loland CJ, Byrne B, Chae PS. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilization. Chemical Communications (2016) 52: 12104-12107
12 Cho KH, Hariharan P, Mortensen JS, Du Y, Nielsen AK, Byrne B, Kobilka BK, Loland CJ, Guan L, Chae PS. Isomeric detergent comparison for membrane proteins stability: importance of inter alkyl chain distance and alkyl chain length. ChemBioChem (2016) 17:2334-2339
11 Carr R 3rd, Schilling J, Song J, Carter RL, Du Y, Yoo SM, Cheung JY, Tilley DG, Benovic JL. β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc. Natl. Acad. Sci. (2016) 113: 4107-16
10 DeVree B, Mahoney J, Velez-Ruiz G, Rasmussen SGF, Kuszak A, Edwald E, Fung JJ, Manglik A, Masureel M, Du Y, Matt R, Pardon E, Steyaert J, Kobilka BK, Sunahara RK. Allosteric coupling from G protein to the agonist binding pocket in GPCRs. Nature. (2016) 535 (7610):182-6
9 Tian X, Irannejad R, Bowman SL, Du Y, Puthenveedu MA, Zastrow M, and Benovic JL. The α-Arrestin ARRDC3 Regulates the Endosomal Residence Time and Intracellular Signaling of the β2-Adrenergic Receptor. J. Biol. Chem. (2016) 291: 14510-25
8 Hussain H, Du Y, Scull NJ, Mortensen JS, Tarrasch J, Loland CJ, Bernadette Byrne B, Kobilka BK, and Chae PS. Accessible mannitol-based amphiphiles (MNAs) for membrane protein solubilisation and stabilization. Chemistry. (2016) 22: 7068-73
7 Cho KH, Du Y, Scull NJ, Hariharan P, Gotfryd K, Loland CJ, Guan L, Byrne B, Kobilka BK, Chae PS. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation. Chemistry. (2015) 21: 10008-13
6 Carr R 3rd, Du Y, Quoyer J, Panettieri RA Jr, Janz JM, Bouvier M, Kobilka BK, Benovic JL. Development and characterization of pepducins as Gs-biased allosteric agonists. J. Biol. Chem. (2014) 289: 35668-84.
5 Du Y, Cheng W, Li WF. Expression profiling reveals an unexpected growth-stimulating effect of surplus iron on the yeast Saccharomyces cerevisiae. Mol. and Cells. (2012) 34: 127-132.
4 Du Y*, Shi WW*, He YX, Yang YH, Zhou CZ, Chen Y. Structures of the substrate-binding protein provide insights into the multiple compatible solutes binding specificities of Bacillus subtilis ABC transporter OpuC. Biochemical J. (2011) 436: 283-289
3 Du Y*, He YX*, Zhang ZY, Yang YH, Shi WW, Frolet C, Di Guilmi AM, Vernet T, Zhou CZ, and Chen Y. Crystal structure of the mucin-binding protein of Spr1345 from Streptococcus pneumoniae. J. of Struct. Biol. 2011, 174: 252-257
2 Du Y, He YX, Gaowa S, Zhang X, Chen Y, Zhang SC, Zhou CZ. Crystal structures of the apo and GDP-bound forms of a cupin-like protein BbDUF985 from Branchiostoma belcheri tsingtauense. Proteins. 2010, 78(12): 2714-9
1 He YX, Gui L, Liu YZ, Du Y, Zhou Y, Li P, Zhou CZ. Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube-like supramolecular assembly. Proteins. 2009, 76(1): 249-54