刘国珍

副教授

教育背景

博士(新南威尔士大学)

硕士(中国地质大学)

学士(湖北师范大学)

研究领域
生物医学工程、生物传感器、微流控纸基生物芯片、柔性穿戴设备、3D打印、体外诊断、智能纳米颗粒及医疗器械
电子邮件
liuguozhen@cuhk.edu.cn
个人简介

刘国珍教授现任香港中文大学(深圳)生命与健康科学学院副教授。刘教授毕业于澳大利亚新南威尔斯大学,师从Justin Gooding教授。刘教授曾担任新南威尔斯大学生物医学工程学院副教授,并获得澳大利亚研究理事会授予的未来学者荣誉(ARC Future Fellow)、新南威尔斯大学生物医学工程学院的荣誉副教授。刘教授凭借新一代癌症免疫疗法, 获得2020年度乔治娜斯威特定量生物医学女科学家奖(Georgina Sweet Award for Women in Quantitative Biomedical Science)。除了在学术界的教学和科研经历,刘教授在工业界也累积了丰富的生物医疗器械研发和管理经验。她曾(2011-2015)担任美国医疗器械公司AgaMatrix Inc. 研发部经理(中国),主要负责血糖试纸条的配方和生产。刘教授是澳大利亚初创公司Bio-Sens Tech的联合创始人。

刘教授主要从事生物医学工程交叉学科和可转化生物技术的研究,她一直致力于开发和研究前沿的生物传感器技术,智能纳米颗粒,及医疗器械来精准诊疗,管理及预防和我们免疫系统相关的一些慢性疾病如糖尿病,败血症,帕金森症,抑郁症等,从而提高我们的生活质量。近年来她在Adv. Funct. Mat., Adv. Sci.Trends Biotech.Angew. Chem. Int. Ed.Biosens. Bioelectron.ACS Sens. Anal. Chem.等国际学术期刊发表SCI论文100余篇,撰写专著2章,申请并授权世界发明专利9项。她的专利技术先后获得了500多万澳元的来自澳大利亚政府和工业界(包括世界制药巨头阿斯利康AstraZeneca)的研究基金。在任职华中师范大学期间(2009-2015),刘教授先后获得了中国国家自然基金委青年基金和面上项目的资助。目前,刘教授担任Frontiers in Bioengineering and Biotechnology杂志Biosensors and Biomolecular Electronics部的总编辑,Biosensors & Bioelectronics杂志特刊编辑。刘教授目前担任电气电子工程师学会传感器理事会(IEEE Sensor CouncilNSW 分会副主席。

 

 

 

学术著作

Selected peer-reviewed journal publications since 2016 (*corresponding author; Google citations: https://scholar.google.com.au/citations?user=xms_zr0AAAAJ&hl=en)


Topics on Microfluidic biochips for point-of-care diagnostics
1. V. Shirshahi,* G. Liu*, Enhancing the analytical performance of paper lateral flow assays: From chemistry to engineering, TrAC Trends Anal. Chem., 2021, 136, 116200, https://doi.org/10.1016/j.trac.2021.116200
2. Z. Luo, T. Lv, K. Zhu, Y. Li, L. Wang, J. J. Gooding, G. Liu*, B. Liu*, Paper-based Ratiometric Fluorescence Analytical Devices towards Point-of-Care Testing of Human Serum Albumin, Angew. Chem. Int. Ed., 2020, 59, 1-7, https://doi.org/10.1002/anie.201915046
3. M. Baharfar, M. Rahbar, M. Tajiki, G. Liu*, Engineering Strategies for Enhancing the Performance of Electrochemical Paper-Based Analytical Devices, Biosens. Bioelectron., 2020, 167, 112506, https://doi.org/10.1016/j.bios.2020.112506  
4. A. Hassanzadeh-Barforoushi*, M. Ebrahimiwarkiani, D. Gallego-Ortega, G. Liu, T. Barber, Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments, Biosens. Bioelectron., 2020, 112113, https://doi.org/10.1016/j.bios.2020.112113
5. L. Liu, D. Yang, G. Liu*. Signal amplification strategies for paper-based analytical devices, Biosens. Bioelectron., 2019, 136, 60-75, https://doi.org/10.1016/j.bios.2019.04.043
6. B. V. Dang, A. Hassanzadeh-Barforoushi, M. S. Syed, D. Yang, S.-J. Kim, R. Taylor, G.-J. Liu, G. Liu*, Tracie Barber*. Microfluidic actuation via 3D-printed molds towards multiplex biosensing of cell apoptosis, ACS Sens., 2019, 482181-482189, https://doi.org/10.1021/acssensors.9b01057


Topics on CRISPR/Cas based biosensing technologies
7. Y. Li, S. Li, J. Wang, G. Liu*, CRISPR/Cas systems towards next generation biosensing, Trends in Biotechnology, 2019, 37 (7), 730-743, https://doi.org/10.1016/j.tibtech.2018.12.005
8. Y. Li, L. Liu, G. Liu*, CRISPR/Cas multiplexed biosensing: a challenge or an insurmountable obstacle? Trends in Biotechnology, 2019, 37(8), 792-795, https://doi.org/10.1016/j.tibtech.2019.04.012
9. Y. Dai, Y. Wu, G. Liu, J. J. Gooding, CRISPR mediated biosensing toward understanding cellular biology and point-of-care diagnosis, Angew. Chem. Int. Ed., 2020, 132, 20938-20950, https://doi.org/10.1002/ange.202005398
10. L. Peng, J. Zhou, G. Liu, L. Yin, S. Ren, S. Li*, L. Ma*, CRISPR-Cas12a based aptasensor for sensitive and selective ATP detection, Sens. Actuators B: Chem, 2020, 128164, 1-5, https://doi.org/10.1016/j.snb.2020.128164
11. J. Zhou, L. Yin, Y. Dong, L. Peng, G. Liu, S. Man, L. Ma*, Cas13a Based Bacterial Detection Platform: Sensing Pathogen Staphylococcus aureus in Food Samples, Anal. Chim. Acta, 2020, 1127, 225-233, https://doi.org/10.1016/j.aca.2020.06.041


Topics on Wearable biosensing devices
12. M. R. Benzigar, V. D.B.C Dasireddy, X. Guan, T. Wu, G. Liu*, Advances on emerging materials for flexible supercapacitors: current trends and beyond, Adv. Funct. Mater., 2020, 2002993, 1-41, https://doi.org/10.1002/adfm.202002993
13. L. Qiao, M. Benzigar, A. Subramony, N. Lovell, G. Liu*, Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms, ACS Appl. Mater. Interfaces, 2020, 12, 30, 34337–34361, https://doi.org/10.1021/acsami.0c07614 
14. G. Liu*, C. Cao, H. Wei, S. Feng, S. Ni, On-Chip Structure-Switching Aptamer Modified Magnetic Nanobeads for Continuous Monitoring of Interferon-gamma Ex Vivo, Microsys. Nanoeng., 2019, (2019) 5:35, 1-11, https://doi.org/10.1038/s41378-019-0074-1 
15. M. Qi, J.W. Huang, H. Wei, C.M. Cao, S.L. Feng, Q. Guo, E.M. Goldys, R. Li, G. Liu*, Graphene oxide thin film with dual function integrated into a nano-sandwich device for in vivo monitoring of interleukin-6, ACS Appl. Mater. Interfaces, 2017, 9(48), 41659-41668, https://doi.org/10.1021/acsami.7b10753


Topics on Deployable in vivo biosensing devices for monitoring of cytokines
16. C. Cao, R. Jin, H. Wei, Z. Liu, S. Ni, G-J Liu, H. A. Young, X. Chen*, G. Liu*, Adaptive in vivo device for theranostics of inflammation: real-time monitoring of interferon-gamma and aspirin, Acta Biomaterialia, 2020, 101, 372-383, https://doi.org/10.1016/j.actbio.2019.10.021
17. Z. Shen, J. Huang, H. Wei, H. Niu, B. Li, R. Li, G. Liu*, Validation of an in vivo electrochemical immunosensing platform for simultaneous detection of multiple cytokines in Parkinson’s Disease mice model, Bioelectrochemistry, 2020, 134, 107532, https://doi.org/10.1016/j.bioelechem.2020.107532
18. A. Arman, F. Deng, E. M. Goldys, G. Liu*, M. R. Hutchinson*, In vivo intrathecal IL-1β quantification in rats: monitoring the molecular signals of neuropathic pain, Brain Behav. Immu., 2020, 88, 442-450, https://doi.org/10.1016/j.bbi.2020.04.009
19. F. Deng, E.M. Goldys, G. Liu*, Molecularly imprinted polymer-based reusable biosensing device on stainless steel for spatially localized detection of cytokine IL-1β, Sens. Actuators B: Chem., 2019, 292, 277-283, https://doi.org/10.1016/j.snb.2019.04.142
20. F. Zhang, F. Deng, G-J Liu, R. Middleton, D. Inglis, A. Anwer, S. Wang, G. Liu*, IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing, Mol. Sys. Design Eng., 2019, 4, 872-881, https://doi.org/10.1039/C9ME00047J
21. C. Cao, F. Zhang, E. M. Goldys, F. Gao, G. Liu*, Advances in structure-switching aptasensing towards real-time detection of cytokines, TrAC Trends Anal. Chem., 2018, 102, 379-396, https://doi.org/10.1016/j.trac.2018.03.002
22. C. Cao. R. Jin, H. Wei, W. Yang, E. Goldys, M. R. Hutchinson, S. Liu, X. Chen*, G. Yang, G. Liu*, Graphene Oxide Based Recyclable In vivo Device for Amperometric Monitoring of Interferon-γ in Inflammatory Mice, ACS Appl. Mater. Interfaces, 2018, 10 (39), 33078–33087, https://doi.org/10.1021/acsami.8b13518
23. H. Wei, S.N. Ni, C.M. Cao, G. F. Yang, G. Liu*, Graphene oxides signal reporters based multifunctional immunosensing platform for amperometric profiling of multiple cytokines in serum, ACS Sens., 2018, 3(8), 1553-1561, https://doi.org/10.1021/acssensors.8b00365
24. M. Qi, Y. Zhang, C.M. Cao, M. Zhang, S. Liu, G. Liu*, Decoration of RGO nanosheets with aryldiazonium salt and gold nanoparticles towards a label-free amperimetric immunosensor for detecting TNF-a in live cells, Anal. Chem., 2016, 88(19), 9614-9621, https://doi.org/10.1021/acs.analchem.6b02353


Topics on Intelligent nanoparticles for nanomedicine
25. Clement, J. M. Campbell, W. Deng, A. Guller, S. Nisar, G. Liu, B. C. Wilson*, E. M. Goldys*, Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer, Adv. Sci., 2020, 7(24), 2003584, https://doi.org/10.1002/advs.202003584
26. G. Liu*, C. Bursill, S. P. Cartland, A. G. Anwer, L. M. Parker, K. Zhang, S. Feng, M. He, D. W. Inglis, M. M. Kavurma, M.R. Hutchinson, E. M Goldys*, A nanoparticle-based affinity sensor that identifier and select highly cytokine-secreting cells, iScience, 2019, 20, 137-147, https://doi.org/10.1016/j.isci.2019.09.019
27. K. Wen, X. Xu, J. Chen, L. Lv, L. Wu, Y. Hu, X. Wu, A. Peng, G. Liu, H. Huang*, Triplet Tellurophene-based Semiconducting Polymer Nanoparticles for Near-Infrared-mediated Cancer Theranostics, ACS Appl. Mater. Interfaces, 2019, 11, 19, 17884-17893, https://doi.org/10.1021/acsami.9b05196
28. T. Jiang, L. Zhou, H. Liu, P. Zhang*, G. Liu, P. Gong, C. Li, W. Tan, J. Chen, L. Cai*, A Monitorable Mitochondria-targeting DNAtrain for Image-guided Synergistic Cancer Therapy, Anal. Chem., 2019, 91, 6996-7000, https://doi.org/10.1021/acs.analchem.9b01777
29. K. Ma, G-J. Liu, L. Yan, S. Wen, B. Xu, W. Tian, E. Goldys, G. Liu*, AIEgen based PLGA magnetic nanoparticles to localize cytokine VEGF for early diagnosis and photothermal therapy, Nanomedicine, 2019, 14(9). 1191-1201, https://doi.org/10.2217/nnm-2018-0467
30. K. Ma, F., Zhang, N. Sayyadi, W. J. Chen, A. Anwer, A. Care, B. Xu, W. J. Tian, E. M. Goldys,G. Liu*, Turn-on fluorescent aptasensor based on AIEgen labelling for the localisation of IFN-y in live cells, ACS Sens., 2018, 3(2), 320-326. https://pubs.acs.org/doi/10.1021/acssensors.7b00720
31. G. Liu*, K. Zhang, K. Ma, A. Care, M.R. Hutchinson, E. M. Goldys, Graphene quantum dots based "switch-on" nanosensors for intracellular cytokine monitoring, Nanoscale, 2017, 9, 4934-4943, https://doi.org/10.1039/C6NR09381G
32. X. Gong, G. Liu, Y. Li, Y. Yu, W.Y*. Teoh, Functionalized-graphene composites: Fabrication and applications in sustainable energy and environment, Chem. Mater., 2016, 28(22), 8082-8118. https://doi.org/10.1021/acs.chemmater.6b01447